ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Aaron Wysocki, Prashant Jain, Santosh Bhatt, Jordan Rader
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1442-1463
Technical Paper | doi.org/10.1080/00295639.2022.2027176
Articles are hosted by Taylor and Francis Online.
The Transformational Challenge Reactor (TCR) is a helium-cooled, yttrium-hydride-moderated reactor that was designed for the U.S. Department of Energy Office of Nuclear Energy. A key objective of the TCR was to employ advanced manufacturing techniques in a nuclear system and demonstrate their potential for revolutionizing the nuclear reactor design process. One purpose of the present work is to demonstrate the safety of the TCR under postulated accidents. Based on RELAP5-3D and COMSOL analyses, the TCR remained below all current safety limits and far below the expected failure limits for the core materials. Another purpose of this work is to provide useful insights and recommendations regarding the application of RELAP5-3D to gas-cooled or other advanced reactors. A novel approach was implemented for simultaneously modeling conduction and radiation in RELAP5-3D, which was found to provide reasonable predictions of radial core, vessel, and ex-vessel heat transfer during postulated events. A multicode approach was also applied, in which high-fidelity COMSOL calculations were used to tune the radial heat transfer parameters in RELAP5-3D. The tuned RELAP5-3D model demonstrated comparable peak temperature predictions as COMSOL, despite a coarse treatment of the core in RELAP5-3D consisting of only two lumped heat structures. This high-fidelity tuning approach enabled enhanced accuracy as well as minimal complexity within the RELAP5-3D model, even for complex fuel geometric designs as in the TCR. Finally, investigations were made into the potential for flow reversal during a pressurized loss-of-forced-flow event in the TCR. The TCR is designed with downward helium flow through the core during normal operation. The RELAP5-3D model predicted that this downward flow would persist, without flow reversal, up to several days after the circulator trip. This was attributed to natural circulation hysteresis effects as have been noted in similar thermofluidic systems. Although flow stagnation and eventual reversal did not lead to unsafe TCR conditions, interesting spatial effects were observed which may have safety relevance for other reactor system designs and coolant types that are designed for downward core flow during normal operation, warranting closer investigation of the flow reversal phenomenon.