ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
B. R. Betzler, B. J. Ade, P. K. Jain, A. J. Wysocki, P. C. Chesser, W. M. Kirkland, M. S. Cetiner, A. Bergeron, F. Heidet, K. A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1399-1424
Technical Paper | doi.org/10.1080/00295639.2021.1996196
Articles are hosted by Taylor and Francis Online.
The Transformational Challenge Reactor is a 3-MW(thermal) helium-cooled experimental nuclear reactor designed using an additive manufacturing–informed agile design process. This design process leverages rapid prototyping and advanced materials from emerging additive manufacturing technologies, key characteristics that enable rapid design maturation. The resulting core design incorporates a blend of advanced reactor technologies into an intermediate-spectrum microreactor, including conventionally manufactured tristructural isotropic (TRISO) fuel particles in an advanced manufactured SiC fuel element and a solid yttrium hydride moderator encapsulated in steel. Matured during the design effort, these technologies are incorporated with additively manufactured steel support and fluidic structures to form a 75-cm-outer-diameter cylindrical active core region. Below and above the active core region are axial SiC reflectors, which are housed inside the reactor pressure vessel. The reactor is controlled with an annular shroud actuated external to the pressure vessel in the gap between the pressure vessel and a steel radial reflector. A safety rod is at the center of the core to shut down the reactor when necessary. Helium pressurized at 5 MPa is forced into the pressure vessel below the core and around the core to the top plenum before it is forced down through the axial reflectors and the active core region. The primary pressurized helium loop is operated up to 500°C and includes the pressure vessel, the circulator, and the hot side of a helium-to-air heat exchanger. The secondary loop rejects all heat from the primary loop to ambient air through a heat exchanger. A vented temporary confinement building contains the entire primary loop, with penetrations for a stack, cooling, and the secondary ambient air loop. This is the first advanced nuclear microreactor designed using additive manufacturing technologies, demonstrating their applicability in an accelerated advanced design process.