ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear materials testing project brings U.S. and U.K. expertise together
As nations look to nuclear energy as a source of reliable electricity and heat, researchers and industry are developing a new generation of nuclear reactors to fill the need. These advanced nuclear reactors will provide safe, efficient, and economical power that go beyond what the current large light water reactors can do.
But before large-scale deployment of advanced reactors, researchers need to understand and test the safety and performance of the technologies—especially the coolants and materials—that make them possible.
Now, the United States and the United Kingdom have teamed up to test hundreds of advanced nuclear materials.
Tyler Sumner, Anton Moisseytsev, Daniel O’Grady, Lander Ibarra, Christopher Keckler, Justin Thomas, Thomas Fanning, Carlo Parisi, Nolan Anderson, Frederick Gleicher, SuJong Yoon
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S289-S308
Technical Paper | doi.org/10.1080/00295639.2022.2053487
Articles are hosted by Taylor and Francis Online.
The Versatile Test Reactor (VTR) is a fast spectrum test reactor currently being developed in the United States under the direction of the U.S. Department of Energy, Office of Nuclear Energy. Safety analysis of the conceptual VTR design is being performed using the SAS4A/SASSYS-1 fast reactor safety analysis code with a model representing the reactor core, primary and secondary heat transport systems, reactor vessel auxiliary cooling system, and reactor protection system. The system’s response and safety performance are being evaluated for a wide spectrum of event initiators and accident sequences. This paper presents an overview of the activities that are ongoing in support of the modeling and analysis of safety basis events (SBEs) in the VTR, including the VTR SAS4A/SASSYS-1 model development, an overview of the SAS4A/SASSYS-1 verification and validation efforts, and a summary of key model development activities to improve the predictive capability of the code. A summary of the results and an analysis of several key SBEs are also presented. VTR authorization from the U.S. Department of Energy will require transient simulations that are demonstrated to be accurate.