ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Joel McDuffee, Rich Christensen, Daniel Eichel, Mike Simpson, Supathorn Phongikaroon, Xiaodong Sun, John Baird, Adam Burak, Shay Chapel, Joonhyung Choi, Jacob Gorton, D. Ethan Hamilton, Dimitris Killinger, Sam Miller, Jason Palmer, Christian Petrie, Daniel Sweeney, Adrian Schrell, James Vollmer
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S234-S259
Technical Paper | doi.org/10.1080/00295639.2021.2017663
Articles are hosted by Taylor and Francis Online.
The mission of the Versatile Test Reactor (VTR) is to enable accelerated testing of advanced reactor fuels and materials as required for advanced reactor technologies. Each advanced reactor type has unique challenges, and these challenges affect the design of the testing vehicles used for accelerated testing. For molten salt reactor testing, some of the key focus areas are (1) understanding the complex thermal-hydraulic systems and materials that will facilitate heat removal from the reactor core, (2) mitigating the corrosion-associated issues that arise from using these materials at high temperatures, and (3) understanding how to measure and control salt composition/chemistry and properties during irradiation. This paper details the progress made toward surmounting these challenges to support future molten salt cartridge experiments in the VTR. Broadly, this work involves two major thrusts: design and analysis of an operating cartridge loop, and development of the instrumentation and control system needed to operate the loop successfully.