ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Mitchell T. Farmer, Matthew Weathered, Darius Lisowski, Nathan Bremer, Dennis Kilsdonk, Tim Stack, Caleb Tomlin, Chris Plucker, Ed Moreno, Ran Kong, Zhengting Quan, Adam Dix, Seungjin Kim, Mamoru Ishii, Mark Anderson, Andrew Napora
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S148-S164
Technical Paper | doi.org/10.1080/00295639.2022.2052552
Articles are hosted by Taylor and Francis Online.
The objective of the Versatile Test Reactor (VTR) is to enable testing of advanced reactor fuels and materials in a fast spectrum neutron environment. Internal cartridge loop testing capabilities are being developed that will allow the cartridge coolant to be isolated from the reactor coolant. This approach will allow various cartridge coolants to be investigated, thereby maximizing testing capability. A sodium cartridge loop testing capability is being developed by a team that includes Argonne National Laboratory (Argonne) as the laboratory partner, Framatome Inc. as the industrial partner, and Purdue University along with the University of Wisconsin–Madison as university partners. Specific elements of the current work include overall cartridge loop design development that is being led by Framatome, Inc. Coolant chemistry monitoring and control are key elements of any high-pedigree irradiation testing capability; the University of Wisconsin is leading this effort by developing and experimentally verifying methods for achieving this capability in pile. Purdue University is developing a scaling methodology, and on that basis, a thermal-hydraulic testing capability to validate fluid flow and heat transfer models for the cartridge that will be used to support design and safety analysis activities. Argonne has focused on developing and testing technologies specifically targeted at simplifying VTR operations, as well as developing modeling tools to support cartridge loop design and safety analysis. The purpose of this paper is to summarize the current status of the sodium fast reactor cartridge development, including details on the cartridge functional requirements, physical design, chemistry control, operations, and safety.