ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn
When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.
Jacob A. Hirschhorn, Jeffrey J. Powers, Ian Greenquist, Ryan T. Sweet, Jianwei Hu, Douglas L. Porter, Douglas C. Crawford
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S123-S147
Technical Paper | doi.org/10.1080/00295639.2022.2043539
Articles are hosted by Taylor and Francis Online.
The U.S. Department of Energy Office of Nuclear Energy’s Versatile Test Reactor (VTR) project is designing a new fast-spectrum test reactor. The VTR reference driver fuel design is sodium-bonded U-20Pu-10Zr (wt%) metallic fuel and HT-9 cladding. The BISON fuel performance code is being used to model the VTR driver fuel pin to evaluate the effects of differences between its design and the legacy designs that preceded it. This work summarizes ongoing efforts at Oak Ridge National Laboratory to benchmark BISON for VTR driver fuel analyses, including establishing metallic fuel performance code requirements for VTR applications and benchmarking BISON for VTR driver fuel analyses. Integral fuel pin predictions are compared to legacy calculations and post-irradiation examination data for 261 fuel pins irradiated at Experimental Breeder Reactor II and the Fast Flux Test Facility. The BISON predictions exhibit trends that are generally consistent with the legacy data. Burnup and temperature predictions were found to be more accurate than mechanical predictions such as radial cladding dilation, axial fuel elongation, and plenum pressure. Likely sources of error were identified for evaluation in future work.