ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Idaho cleanup contractor funds local STEAM learning
The Idaho Environmental Coalition (IEC) has provided funding to 15 classrooms in southeastern Idaho to support local educators and encourage the next generation of workers to pursue technical careers, the Department of Energy’s Office of Environmental Management announced. The IEC, which is led by Amentum and includes North Wind Portage as a partner, was awarded a 10-year, $6.4 billion contract in 2021 to manage cleanup operation at the Idaho National Laboratory Site.
Tingzhou Fei, Zhaopeng Zhong, Samuel E. Bays, Florent Heidet
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S98-S109
Technical Paper | doi.org/10.1080/00295639.2021.1991760
Articles are hosted by Taylor and Francis Online.
The Versatile Test Reactor (VTR) is currently under development by the U.S. Department of Energy. It will provide very high fast neutron flux irradiation capabilities that are currently unavailable in the United States. Given the increasingly large number of advanced reactor concepts being pursued in recent years, this irradiation testing capability will be essential to support maturation of these designs. Radiation protection is an important part of the VTR design. High neutron fluxes can pose a challenge for radiation protection of the structures and equipment near the reactor core. This paper provides a summary on the status of the radiation protection considerations and shielding analysis performed for VTR under a nominal operating condition. The main radiation sources identified and examined in the study are applicable only under this operating condition. The paper focuses on three areas of radiation protection and shielding: secondary sodium activation in the intermediate heat exchanger, air activation in the reactor vessel auxiliary cooling system, and dose rate above the head access area due to primary sodium activation. VTR design and development are continuously progressing, and as such, the shielding considerations discussed in this paper will evolve alongside the overall VTR design.