ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
F. Heidet, J. Roglans-Ribas
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S23-S37
Technical Paper | doi.org/10.1080/00295639.2022.2091907
Articles are hosted by Taylor and Francis Online.
The VTR is a 300-MW(thermal) sodium-cooled fast reactor (SFR) designed for the specific purpose of delivering unique testing capabilities to enable the advancement of all reactor technologies. With its flux level, irradiation volume, and operational flexibility, the VTR will enable accelerated testing of materials, fuels, and various components needing irradiation testing. Proven SFR technologies and design approaches have been leveraged in designing the VTR core, ensuring the highest possible readiness level. This resulted in the VTR using ternary metallic fuel and delivering fast flux levels in excess of 4 × 1015 n/cm2·s over large useful volumes, corresponding to about 60 dpa/year in steel. As part of the design efforts, the VTR core performance has been determined for a representative configuration, ensuring that the reactivity control systems offer sufficient shutdown margins, that the core can be safely cooled in all situations, and that reactivity feedback coefficients are conducive to a favorable safety behavior. Furthermore, the incorporation of features such as fuel assembly storage in the shield region supports the flexible and reliable operation of the VTR. Additional design work has been ongoing as well. This includes thorough shielding performance evaluations to ensure safe operation of the VTR, verification and validation of the design tools used to achieve compliance with Nuclear Quality Assurance (NQA-1) requirements, early assessment of the impact of irradiation experiments on the core performance envelope and associated margins, and in-depth uncertainty quantification efforts to quantify the anticipated range of performance characteristics. An experimental program supporting the VTR core design has been set up, with the current focus being on thermal-hydraulic experiments. The purpose of this experimental program is to obtain confirmatory measurements to serve directly as part of the core design basis or as part of the validation cases supporting the simulation tools used.