ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Huayang Zhang, Bin Zhong, Huayun Shen, Li Cheng, Jinhong Li
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1236-1246
Technical Paper | doi.org/10.1080/00295639.2022.2070386
Articles are hosted by Taylor and Francis Online.
Pinhole imaging is an important test technique to obtain information on the spatial distribution of the radiation field in the target region and has been widely used in nuclear physics and inertial confinement fusion (ICF). Coded-aperture, able to maintain good resolution as well as enhancing signal strength, has become a more frequently used method than pinhole imaging in experimental studies. Thus, implementing Monte Carlo simulations of coded-aperture imaging will improve coded-aperture design, image reconstruction, and other related works. However, the current international mainstream Monte Carlo transport simulation programs do not possess the ability to directly simulate coded-aperture imaging. This paper develops a relatively complete coded-aperture imaging simulation function on the Neutron Photon Transport System code based on the next-event estimation method. With the application of Monte Carlo simulation techniques, such as variance reduction and rejection sampling, it is capable of simulating coded-aperture accurately, flexibly, and efficiently, including problems of multiple shapes and even irregular geometry. The results are consistent with combined pinhole imaging, and the computational efficiency has been improved significantly.