ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Junghyun Bae, Robert S. Bean
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1224-1235
Technical Paper | doi.org/10.1080/00295639.2022.2055700
Articles are hosted by Taylor and Francis Online.
In pool-type research reactors, the fuel core is placed in a large open pool of water, and it is consistently cooled by natural circulation. To meet the increasing demands of reactor-based research, i.e., neutron irradiation and isotope production, many institutes have been considering upgrading the designed power levels of their research reactors to maximize their utility. However, increasing operating power levels without replacing the major components of the reactor system is challenging because two important analyses must be extensively performed: (1) neutron transport analysis for nuclear fission and decay heat generation and (2) thermohydraulic analysis for heat removal in the core. In this paper, we investigate thermohydraulic limits on the maximum power of the Purdue University research reactor (PUR-1) using computational fluid dynamics (CFD) simulations which are coupled with the results from Monte Carlo neutron transport simulations. We design a PUR-1 fuel assembly, which is designated as the hottest one for CFD simulations, that includes a narrow, rectangular, and upward coolant channel. Here we demonstrate that the thermohydraulic limit for PUR-1 core power is 350 kW without changing the coolant system. Given a conservative safety margin, however, the estimated maximum power level is decreased to 170 kW. In the end, the results of two additional cooling systems—guide pipe and lowered coolant temperature—are presented to demonstrate the potential of advanced cooling capacity. They would enable reactors to operate at higher core power levels.