ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Mohinder Singh, Akash Tondon, Bhajan Singh, B. S. Sandhu
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1172-1193
Technical Paper | doi.org/10.1080/00295639.2022.2067737
Articles are hosted by Taylor and Francis Online.
This work deals with the evaluation of interaction cross sections, effective atomic number, and effective electron density at gamma photon energies, not available from standard radioisotopes. The Compton scattering technique is used to obtain the required gamma energies within a specific range of energies from 241.8 to 401.8 keV to perform the radiation measurements. Radiation interaction parameters of some inorganic compounds (high-Z rare-earth nitrate hexahydrate), namely, Lanthanum(III) nitrate hexahydrate [La(NO3)3.6H2O] and Samarium(III) nitrate hexahydrate [Sm(NO3)3.6H2O], soluble in low-Z organic solvent (acetone) are evaluated. Six scattering angles are chosen to obtain six (not available from standard radioisotopes) Compton scattered energies to perform narrow-beam transmission experiments. An NaI(Tl) scintillation detector is used to detect the transmitted flux from the different solutions in various proportions. Photon interaction parameters useful in vast basic and applied fields are evaluated. The present measured results, obtained from the Compton scattered technique, are found to be in good agreement with the computed values of radiation interaction parameters obtained from the WinXCom program. The present data on rare-earth solutions have definite scientific importance in nuclear and radiation physics and fill in the gap of nonavailability of such data for radiation workers at these specific energies.