ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NorthStar closes on Vallecitos D&D agreement
NorthStar Group Services has announced that it has closed on an agreement to acquire ownership of the Vallecitos Nuclear Center from GE Vernova and GE Hitachi Nuclear Energy for NorthStar's nuclear decontamination, decommissioning, and environmental site restoration.
Alex Pegarkov, Shawn Somers-Neal, Edgar Matida, Vinh Tang, Tarik Kaya
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1161-1171
Technical Paper | doi.org/10.1080/00295639.2022.2067738
Articles are hosted by Taylor and Francis Online.
During a severe power reactor accident, the plant core can melt. The resulting mixture of molten nuclear fuel and other in-core materials is known as corium. For a Canada Deuterium Uranium (CANDU) reactor, the corium is expected to settle at the bottom of the calandria vessel, but there is a potential for some melt to flow through connecting piping and other penetrations. The flow of corium through these structures can be contained if melt solidification and thus plugging occur. A numerical model was created to simulate the flow of molten metal through an empty vertical pipe. This model was benchmarked to a previous analytical model and validated against experimental results with gallium metal (which is a metal with low melting temperature) as an alternative for corium. The numerical model predicted the penetration length of gallium with an average percent error of 10.3% when compared to the experimental penetration length results of gallium. The model was also updated to predict the corium penetration length in cooling pipes of the CANDU reactor during a severe accident.