ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Cheol Ho Pyeon, Kota Morioka
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1147-1160
Technical Paper | doi.org/10.1080/00295639.2022.2070385
Articles are hosted by Taylor and Francis Online.
Nuclear data–induced uncertainty of criticality is successfully analyzed by combining the eigenvalue calculations, the uncertainty, and the reduction of uncertainty with the use of the KENO-VI code, the TSUNAMI-3D and the TSURFER modules of the SCAL6.2.4 code system, respectively. The comparative study of conventional and revised S(α, β) applications is also conducted by KENO-VI. Notably, the KENO-VI analyses reveal the difference between the experimental and numerical results of criticality and the neutron spectrum dependence of criticality on the H/U ratio in the solid-moderated and solid-reflected cores at the Kyoto University Critical Assembly (KUCA). The difference is identified as the leading cause of uncertainty in the 235U fission spectrum (χ value) through the combined use of the uncertainty and the cross-section adjustment by TSUNAMI-3D and TSURFER, respectively, especially that the highly enriched uranium (HEU) fuel is loaded into the KUCA cores. Also, the neutron spectrum dependence of criticality is attributable to the uncertainty induced by the cross-section data of 235U capture, 27Al elastic scattering, and inelastic scattering reactions in the HEU fuel plate and to the 1H capture reactions in the polyethylene moderator through the TSUNAMI-3D analyses.