ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn
When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.
Peter Jansson, Martin Bengtsson, Ulrika Bäckström, Francisco Álvarez-Velarde, Dušan Čalič, Stefano Caruso, Ron Dagan, Luca Fiorito, Lydie Giot, Kevin Govers, Augusto Hernandez Solis, Volker Hannstein, Germina Ilas, Marjan Kromar, Jaakko Leppänen, Marita Mosconi, Pedro Ortego, Rita Plukienė, Arturas Plukis, Anssu Ranta-Aho, Dimitri Rochman, Linus Ros, Shunsuke Sato, Peter Schillebeeckx, Ahmed Shama, Teodosi Simeonov, Alexey Stankovskiy, Holly Trellue, Stefano Vaccaro, Vanessa Vallet, Marc Verwerft, Gašper Žerovnik, Anders Sjöland
Nuclear Science and Engineering | Volume 196 | Number 9 | September 2022 | Pages 1125-1145
Technical Paper | doi.org/10.1080/00295639.2022.2053489
Articles are hosted by Taylor and Francis Online.
The decay heat rate of five spent nuclear fuel assemblies of the pressurized water reactor type were measured by calorimetry at the interim storage for spent nuclear fuel in Sweden. Calculations of the decay heat rate of the five assemblies were performed by 20 organizations using different codes and nuclear data libraries resulting in 31 results for each assembly, spanning most of the current state-of-the-art practice. The calculations were based on a selected subset of information, such as reactor operating history and fuel assembly properties. The relative difference between the measured and average calculated decay heat rate ranged from 0.6% to 3.3% for the five assemblies. The standard deviation of these relative differences ranged from 1.9% to 2.4%.