ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE releases $56.7M in second round of Palisades loan funding
Energy Secretary Chris Wright announced this week the release of the second part of Holtec’s loan disbursement for the Palisades nuclear plant restart plans in Michigan.
Donghao He, William Walters
Nuclear Science and Engineering | Volume 196 | Number 9 | September 2022 | Pages 1101-1113
Technical Paper | doi.org/10.1080/00295639.2022.2049991
Articles are hosted by Taylor and Francis Online.
The combined fission matrix (CFM) method is a newly developed neutron transport theory. This method estimates the fission matrix of the reactor core or spent fuel pool by combining a set of database fission matrices. The RAPID neutron transport code based on the CFM routine was developed originally for the spent fuel storage system and has been applied to the reactor core calculation in recent years. It can perform high-fidelity whole-core transport calculations within minutes. However, since the fission matrix database is obtained from Monte Carlo calculations, the uncertainty in the fission matrix will inevitably pass to its eigenvalue and eigenvector. The RAPID code also uses the fission matrix homogenization and interpolation techniques to further improve the calculation efficiency. Therefore, it is difficult to establish a relationship between the fission matrix elements’ uncertainty and the resulting eigenvalue and eigenvector uncertainties. This paper proposes two uncertainty analysis methods to obtain the eigenvalue and eigenvector uncertainties. The fission matrix resampling method resamples the database fission matrix elements according to each individual uncertainty. This method could generate many fission matrix databases at little additional costs and analyze the eigenvalue and eigenvector uncertainties from these resampled fission matrix coefficients. The analog uncertainty analysis method predicts the eigenvalue uncertainty from the uncertainty of the total fission rate in a fixed-source calculation, which yields a fission matrix column. Both uncertainty analysis methods have been validated against the reference brute-force calculations on a single-pin model and the BEAVRS whole-core model. It shows that the fission matrix resampling method could well estimate the uncertainties in the fission matrix eigenvalue and eigenvector. The analog uncertainty analysis method can accurately predict the eigenvalue uncertainty, which provides a guideline for the number of neutron histories simulated per fixed-source calculation.