ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 824-851
Technical Paper | doi.org/10.1080/00295639.2021.2025298
Articles are hosted by Taylor and Francis Online.
Mass chain yield distribution has been done in the thermal neutron–induced fission of 239Pu by measuring the cumulative yields of various fission products within the mass range of 78 to 159 and the independent yields of a few products. An off-line gamma-ray spectrometric technique was used to measure the gamma-ray activities of the fission products. From the measured values of the cumulative yields, the post-neutron mass chain yield distribution was obtained after applying the charge distribution correction. Data from the present and earlier work of our laboratory in the 239Pu(nth,f) reaction were compared with similar data of 238,241Pu(nth,f) and 240Pu(n,f) reactions, and it was found that the fine structures of the mass yield distributions are similar. The mass yield distribution in the 239Pu(nth,f) reaction was also compared with those of 229Th(nth,f) and 252Cf(SF) reactions to examine the effect of charge and mass difference of the fissioning systems on the mass yield distribution. It was found that the asymmetric standard I mode of fission is favorable in the 238,239,241Pu(nth,f) and 240Pu(n,f) reactions whereas the standard II mode is favorable in the 229Th(nth,f) and 252Cf(SF) reactions.