ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Patrick J. O’Neal, Sunil S. Chirayath, Qi Cheng
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 811-823
Technical Paper | doi.org/10.1080/00295639.2021.2024037
Articles are hosted by Taylor and Francis Online.
A nuclear forensics technique, based on the maximum likelihood method, for the attribution of reactor type, fuel burnup, and time since irradiation (TSI) of separated pure plutonium (Pu) samples was previously developed at Texas A&M University. The method utilized measured values of ten intra-elemental isotope ratios in the Pu sample and a large database consisting of the values for these ratios as a function of the three attributes: reactor type, fuel burnup, and TSI. However, this method failed for Pu samples with mixed attributes. Hence, a new technique based on machine learning methods was developed that matched the capabilities of the previous maximum likelihood method for pure Pu samples. This new methodology used support vector machines for reactor-type discrimination and Gaussian process regression for fuel burnup quantification. The TSI was calculated analytically using the predicted reactor type and fuel burnup. This new method holds great potential for the attribution of mixed Pu samples.