ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Patrick J. O’Neal, Sunil S. Chirayath, Qi Cheng
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 811-823
Technical Paper | doi.org/10.1080/00295639.2021.2024037
Articles are hosted by Taylor and Francis Online.
A nuclear forensics technique, based on the maximum likelihood method, for the attribution of reactor type, fuel burnup, and time since irradiation (TSI) of separated pure plutonium (Pu) samples was previously developed at Texas A&M University. The method utilized measured values of ten intra-elemental isotope ratios in the Pu sample and a large database consisting of the values for these ratios as a function of the three attributes: reactor type, fuel burnup, and TSI. However, this method failed for Pu samples with mixed attributes. Hence, a new technique based on machine learning methods was developed that matched the capabilities of the previous maximum likelihood method for pure Pu samples. This new methodology used support vector machines for reactor-type discrimination and Gaussian process regression for fuel burnup quantification. The TSI was calculated analytically using the predicted reactor type and fuel burnup. This new method holds great potential for the attribution of mixed Pu samples.