ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Patrick O’Rourke, Scott Ramsey, Brian Temple
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 792-810
Technical Paper | doi.org/10.1080/00295639.2021.2018926
Articles are hosted by Taylor and Francis Online.
This work applies the Lie Group Theory (LGT) to the neutron slowing-down equations for the n’th lethargy interval with the goal of defining the symmetry group associated with Dawn’s analytical solution. We also demonstrate two competing methods of the LGT and how they each result in the same solution and symmetry group. The two methods differ by taking advantage of the definition of a symmetry group from either a geometrical perspective or an algebraic perspective. The methods are the Traditional Lie Algorithm, which we apply to the equivalent system of ordinary differential equations for neutrons slowing down, as well as the Grigoriev-Meleshko Method, which we apply directly to the Volterra integral equation for neutrons slowing down. We also discuss the physical meaning of the symmetry group related to Dawn’s solution.