ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
MC&A and safety in advanced reactors in focus
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Go deeper: A recording of the full webinar “Updates on Advanced Nuclear Reactor Security and Material Control and Accounting,” which is available only to ANS members, can be viewed here.
Patrick O’Rourke, Scott Ramsey, Brian Temple
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 792-810
Technical Paper | doi.org/10.1080/00295639.2021.2018926
Articles are hosted by Taylor and Francis Online.
This work applies the Lie Group Theory (LGT) to the neutron slowing-down equations for the n’th lethargy interval with the goal of defining the symmetry group associated with Dawn’s analytical solution. We also demonstrate two competing methods of the LGT and how they each result in the same solution and symmetry group. The two methods differ by taking advantage of the definition of a symmetry group from either a geometrical perspective or an algebraic perspective. The methods are the Traditional Lie Algorithm, which we apply to the equivalent system of ordinary differential equations for neutrons slowing down, as well as the Grigoriev-Meleshko Method, which we apply directly to the Volterra integral equation for neutrons slowing down. We also discuss the physical meaning of the symmetry group related to Dawn’s solution.