ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Helin Gong, Sibo Cheng, Zhang Chen, Qing Li
Nuclear Science and Engineering | Volume 196 | Number 6 | June 2022 | Pages 668-693
Technical Paper | doi.org/10.1080/00295639.2021.2014752
Articles are hosted by Taylor and Francis Online.
This paper proposes an approach that combines reduced-order models with machine learning in order to create physics-informed digital twins to predict high-dimensional output quantities of interest, such as neutron flux and power distributions in nuclear reactor cores. The digital twin is designed to solve forward problems given input parameters, as well as to solve inverse problems given some extra measurements. Offline, we use reduced-order modeling, namely, the proper orthogonal decomposition, to assemble physics-based computational models that are accurate enough for the fast predictive digital twin. The machine learning techniques, namely, k-nearest-neighbors and decision trees, are used to formulate the input-parameter-dependent coefficients of the reduced basis, after which the high-fidelity fields are able to be reconstructed. Online, we use the real-time input parameters to rapidly reconstruct the neutron field in the core based on the adapted physics-based digital twin. The effectiveness of the framework is illustrated through a real engineering problem in nuclear reactor physics—reactor core simulation in the life cycle of the HPR1000 governed by the two-group neutron diffusion equations affected by input parameters, i.e., burnup, control rod inserting step, power level, and temperature of the coolant—which shows potential applications for online monitoring purposes.