ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Satish Kumar Dhurandhar, S. L. Sinha, Shashi Kant Verma
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 600-613
Technical Paper | doi.org/10.1080/00295639.2021.2003650
Articles are hosted by Taylor and Francis Online.
In the nuclear fuel structure, most spacers are constructed with vanes that increase turbulence flow mixing downstream of the spacer and therefore enhance the heat transfer rate. The objective of this work is numerical evaluation of the effects of a spacer without a vane and a spacer with a vane (hereinafter referred to as spacer/spacer with vane) on the flow and heat transfer of water at supercritical pressure downstream to the spacer of the annular channel. In this study, computational fluid dynamics (CFD) models of the annular channel have been developed considering spacer/spacer with vane. Experimental data for the heated annular channel have been used to validate the same CFD model (as the geometry used for the experiment) using the CFD code ANSYS Fluent. The CFD results show good agreement with the experimental data used, and hence, the developed CFD models of the annular channel that consider spacer/spacer with vane can be simulated with adequate precision for the flow and heat transfer downstream to the spacer. The effects of spacer/spacer with vane on heat transfer and flow behavior of water have been studied with numerical simulations for the following parameters: mass fluxes of 500 and 1000 kg/m2·s, heat flux of 400 kW/m2, pressure of 25 MPa, and inlet water temperature of 350°C. The results obtained through the simulations show that the spacer with vane has a remarkable influence on flow and heat transfer downstream to the spacer vane against spacer without a vane in an annular channel. Raising the flow velocity is an effective approach to reduce wall temperature and enhance the heat transfer in the channel. The range of the spacer effect in the enhancement of heat transfer is observed from X/D = 0 to 45 in the downstream direction. In addition, the simulation results for the Nusselt number ratio of the present CFD models have been compared with correlation data established by several researchers in a downstream direction to the spacer/spacer with vane, and qualitatively proper agreement has been found.