ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Fabiano Gibson Daud Thulu, Ayah Elshahat, Mohamed Hassan
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 568-583
Technical Paper | doi.org/10.1080/00295639.2021.2009984
Articles are hosted by Taylor and Francis Online.
It is crucial to do safety evaluation of different postulated transient scenarios in actual nuclear power plants (NPPs). Some of the common analyzed scenarios are primary coolant tube rupture and station blackout (SBO). In this research, it was supposed that after establishment of a steady-state condition, an instantaneous guillotine large-break loss-of-coolant accident (LB-LOCA) of 850-mm inside diameter in one of the reactor vessel cold legs occurred, accompanied with SBO. The event progression and the variation of different reactor parameters like loop pressures, mass flow rates, fuel and clad temperature, injection rate of accumulators (ACCs), decay, and reactor power were investigated using the RELAP5/SCDAPSIM/MOD3.5 thermal-hydraulic program. The reactor consequences due to availability and unavailability of passive ACCs were compared. These kinds of analyses assist in estimating the time available to perform operator safety actions. This in turn aids in emergency planning and severe accident management. The results reveal that fuel damage decreased after the introduction of ACCs. Actuation of ACCs at their actuation setpoints provided core cooling by injecting water into the reactor core. However, ACCs alone are inadequate to contain long-term core cooling during a persistent LB-LOCA. The results obtained in the research were compared with MELCOR 2.1 and ASTEC V1.3, and a cohesive agreement was obtained. Therefore, RELAP5/SCDAPSIM/MOD3.5 is capable of modeling a LB-LOCA and SBO in VVER-1000, and it provides a significant analytical capability of safety systems for specialists in the field in NPP safety.