ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Fabiano Gibson Daud Thulu, Ayah Elshahat, Mohamed Hassan
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 568-583
Technical Paper | doi.org/10.1080/00295639.2021.2009984
Articles are hosted by Taylor and Francis Online.
It is crucial to do safety evaluation of different postulated transient scenarios in actual nuclear power plants (NPPs). Some of the common analyzed scenarios are primary coolant tube rupture and station blackout (SBO). In this research, it was supposed that after establishment of a steady-state condition, an instantaneous guillotine large-break loss-of-coolant accident (LB-LOCA) of 850-mm inside diameter in one of the reactor vessel cold legs occurred, accompanied with SBO. The event progression and the variation of different reactor parameters like loop pressures, mass flow rates, fuel and clad temperature, injection rate of accumulators (ACCs), decay, and reactor power were investigated using the RELAP5/SCDAPSIM/MOD3.5 thermal-hydraulic program. The reactor consequences due to availability and unavailability of passive ACCs were compared. These kinds of analyses assist in estimating the time available to perform operator safety actions. This in turn aids in emergency planning and severe accident management. The results reveal that fuel damage decreased after the introduction of ACCs. Actuation of ACCs at their actuation setpoints provided core cooling by injecting water into the reactor core. However, ACCs alone are inadequate to contain long-term core cooling during a persistent LB-LOCA. The results obtained in the research were compared with MELCOR 2.1 and ASTEC V1.3, and a cohesive agreement was obtained. Therefore, RELAP5/SCDAPSIM/MOD3.5 is capable of modeling a LB-LOCA and SBO in VVER-1000, and it provides a significant analytical capability of safety systems for specialists in the field in NPP safety.