ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
In an international industry, regulators cross the border too
Since nuclear physics works the same in Ontario as it does in Tennessee, the industry has been trying to create a reactor that can be deployed on both sides of the border. Now, the Nuclear Regulatory Commission and the Canadian Nuclear Safety Commission have decided that some of their rulings can cross the border too.
Yeni Li, Arvind Sundaram, Hany S. Abdel-Khalik, Paul W. Talbot
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 544-567
Technical Paper | doi.org/10.1080/00295639.2021.1997041
Articles are hosted by Taylor and Francis Online.
As industries take advantage of the widely adopted digitalization of industrial control systems, concerns are heightened about their potential vulnerabilities to adversarial attacks. False data injection attack is one of the most realistic threats because the attack could be as simple as performing a reply attack allowing attackers to circumvent conventional anomaly detection methods. This attack scenario is real for critical systems, e.g., nuclear reactors, chemical plants, etc., because physics-based simulators for a wide range of critical systems can be found in the open market providing the means to generate physics-conforming attack. The state-of-the-art monitoring techniques have proven effective in detecting sudden variations from established recurring patterns, derived by model-based or data-driven techniques, considered to represent normal behavior. This paper further develops a new method designed to detect subtle variations expected with stealthy attacks that rely on intimate knowledge of the system. The method employs physics modeling and feature engineering to design mathematical features that can detect subtle deviations from normal process variation. This work extends the method to real-time analysis and employs a new denoising filter to ensure resiliency to noise, i.e., ability to distinguish subtle variations from normal process noise. The method applicability is exemplified using a hypothesized triangle attack, recently demonstrated to be extremely effective in bypassing detection by conventional monitoring techniques, applied to a representative nuclear reactor system model using the RELAP5 computer code.