ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn
When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.
Zack Taylor, Benjamin S. Collins, G. Ivan Maldonado
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 497-525
Technical Paper | doi.org/10.1080/00295639.2021.1996197
Articles are hosted by Taylor and Francis Online.
A numerical framework for modeling depletion and mass transport in liquid-fueled molten salt reactions is presented based on exponential time differencing. The solution method involves using the finite volume method to transform the system of partial differential equations (PDEs) into a much larger system of ordinary differential equations. The key part of this method involves solving for the exponential of a matrix. We explore six different algorithms to compute the exponential in a series of progression problems that explore physical transport phenomena in molten salt reactors. This framework shows good results for solving linear parabolic PDEs with each of the six matrix exponential algorithms. For large problems, the series solvers such as Padé and Taylor have large run times, which can be mitigated by using the Krylov subspace.