ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Zack Taylor, Benjamin S. Collins, G. Ivan Maldonado
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 497-525
Technical Paper | doi.org/10.1080/00295639.2021.1996197
Articles are hosted by Taylor and Francis Online.
A numerical framework for modeling depletion and mass transport in liquid-fueled molten salt reactions is presented based on exponential time differencing. The solution method involves using the finite volume method to transform the system of partial differential equations (PDEs) into a much larger system of ordinary differential equations. The key part of this method involves solving for the exponential of a matrix. We explore six different algorithms to compute the exponential in a series of progression problems that explore physical transport phenomena in molten salt reactors. This framework shows good results for solving linear parabolic PDEs with each of the six matrix exponential algorithms. For large problems, the series solvers such as Padé and Taylor have large run times, which can be mitigated by using the Krylov subspace.