ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Zack Taylor, Benjamin S. Collins, G. Ivan Maldonado
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 497-525
Technical Paper | doi.org/10.1080/00295639.2021.1996197
Articles are hosted by Taylor and Francis Online.
A numerical framework for modeling depletion and mass transport in liquid-fueled molten salt reactions is presented based on exponential time differencing. The solution method involves using the finite volume method to transform the system of partial differential equations (PDEs) into a much larger system of ordinary differential equations. The key part of this method involves solving for the exponential of a matrix. We explore six different algorithms to compute the exponential in a series of progression problems that explore physical transport phenomena in molten salt reactors. This framework shows good results for solving linear parabolic PDEs with each of the six matrix exponential algorithms. For large problems, the series solvers such as Padé and Taylor have large run times, which can be mitigated by using the Krylov subspace.