ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Dipanjan Ray, Manish Kumar, Om Pal Singh, Prabhat Munshi
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 478-496
Technical Note | doi.org/10.1080/00295639.2021.1987134
Articles are hosted by Taylor and Francis Online.
Considerable studies have been carried out to evaluate the feasibility of the breed and burn (B&B) concept over the last few decades by applying various simplified or more practical methodologies. In this note, similar studies are performed by improving the simplified methodology used by Kumar and Singh in “A Study of Transverse Buckling Effect on the Characteristics of Nuclides Burnup Wave in a Fast Neutron Multiplying Media,” [Journal of Nuclear Engineering and Radiation Sciience, Vol. 5, p. 4 (2019)] and in other international studies. A consistent parametric approach is adopted for the study on buildup and propagation of a nuclear fuel burnup wave in a fast neutron multiplying medium for two-dimensional cylindrical geometry with azimuthal symmetry. The Multiphysics finite element computational code COMSOL is utilized to solve coupled multigroup neutron diffusion and burnup equations in the U-Pu cycle. The characteristics of the wave are evaluated in terms of transient time (TT) and transient length (TL); TT and TL represent the time and distance covered by the wave in establishing a sustained fuel burnup wave, respectively. The steady-state space is characterized by wave velocity and reaction zone width (full-width at half-maximum and full-width at 10% of maximum).
The results of this study are presented in terms of the characteristics of the transient and steady-state parameters to assess the feasibility of a fuel burnup wave. It is concluded that a sustained fuel burnup wave (about 10 years in a reactor of 5-m length) is attainable in application of the B&B concept in traveling wave technology, although optimization of the transient wave parameters (TT of 1100 days and TL of 2.614 m) is necessary to prolong reactor operating life. The results of the present improved model are compared with the results of Kumar and Singh’s simplified model by performing a sensitivity study of the characterization parameters with radius. Variation of TL with respect to radius (decrement of about 10.6% in the modified model and about 5.4% in the simplified one with the increment in reactor radius from 1.1 to 1.3 m) is relatively less compared to the variation observed for TT (decrement of about 76.5% for the modified approach and about 19.1% for the simplified case). The sensitivity of the wave parameters is studied for different values of neutron source strength used in the analysis.