ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Miriam A. Kreher, Kord Smith, Benoit Forget
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 409-432
Technical Paper | doi.org/10.1080/00295639.2021.1980363
Articles are hosted by Taylor and Francis Online.
Transient simulations of nuclear systems face the computational challenge of resolving both space and time during reactivity changes. A common strategy for tackling this issue is to split the neutron flux into shape and amplitude functions. This split can be solved with high-order/low-order methods. In this paper, a direct comparison of commonly used approximations (e.g., adiabatic, omega, alpha eigenvalue, frequency transform, quasi-static) is performed on the two-dimensional Laboratorium für Reaktorregelung und Anlagensicherung (2D-LRA) benchmark problem using a diffusion solver as the high-order solver and point kinetics as the low-order solver. Additionally, a novel hybrid omega/alpha-eigenvalue solver that incorporates frequencies to model delayed neutrons is introduced. The goal of the comparison is to quantify the performance of each method on a common problem to help inform promising pathways for costly high-fidelity solvers. Overall, we show that exponential frequency approximations are an effective strategy for increasing the accuracy of transient simulations with no added cost. Root-mean-square error of the power distribution at the peak of the transient was consistently decreased by 20% by including frequencies. In particular, the hybrid omega/alpha-eigenvalue method shows improvement over existing eigenvalue solvers as a high-order method. However, in our implementation, the cost of solving for the alpha eigenmode is too costly to recommend over the omega method. While time-differencing schemes are more accurate, we believe the eigenvalue methods are more adaptable to further applications in Monte Carlo transients. Furthermore, they required fewer outer time steps, significantly reducing the computational cost.