ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
NRC reviewing 2 unplanned shutdowns at South Texas Project
The U.S. Nuclear Regulatory Commission began a special inspection last week at South Texas Project nuclear power plant into two incidents at the site, which led to separate, unplanned shutdowns of both Units 1 and 2.
Yoshiki Oshima, Tomohiro Endo, Akio Yamamoto
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 379-394
Technical Paper | doi.org/10.1080/00295639.2021.1982549
Articles are hosted by Taylor and Francis Online.
The convergence performance of nonlinear acceleration methods for the method of characteristics (MOC) with flat source (FS) approximation (FS MOC) or linear source (LS) approximation (LS MOC) is numerically investigated by focusing on the spatial and angular approximations in the acceleration calculations. The convergence of nonlinear acceleration depends on the consistency of the calculation models between the higher-order and lower-order (acceleration) methods. The convergence of four acceleration methods is evaluated to clarify the relationship between model consistency and convergence performance. These methods consist of FS or LS for the spatial source distribution and P1 or discrete angle for the angular distribution, i.e., (1) FS analytic coarse mesh finite difference (ACMFD) acceleration (FS ACMFD), (2) LS ACMFD, (3) FS angular-dependent discontinuity factor MOC (ADMOC) acceleration (FS ADMOC), and (4) LS ADMOC. The ACMFD and ADMOC accelerations are based on P1 and discrete angle approximations, respectively. The FS MOC and LS MOC are considered higher-order methods. The FS MOC and LS MOC with five acceleration methods, i.e., the aforementioned four acceleration methods and the conventional coarse mesh finite difference acceleration method, are used to perform fixed-source calculations in one-group one-dimensional homogeneous slab geometry, and the spectral radii are numerically evaluated. The numerical results indicate that (1) the nonlinear acceleration methods that are unconditionally stable for FS MOC also show similar convergence properties for LS MOC in one-dimensional slab geometry; (2) better convergence is observed when the consistency of higher- and lower-order models is high; and (3) when a coarse mesh is optically thick, the spatial homogenization degrades the convergence performance, even if spatial and angular approximations are consistent between the higher- and lower-order models.