ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Nathan H. Hart, Yousry Y. Azmy
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 363-378
Technical Paper | doi.org/10.1080/00295639.2021.1982548
Articles are hosted by Taylor and Francis Online.
The discrete ordinates linear Boltzmann transport equation is typically solved in its spatially discretized form, incurring spatial discretization error. Quantification of this error for purposes such as adaptive mesh refinement or error analysis requires an a posteriori estimator, which utilizes the numerical solution to the spatially discretized equation to compute an estimate. Because the quality of the numerical solution informs the error estimate, irregularities, present in the true solution for any realistic problem configuration, tend to cause the largest deviation in the error estimate vis-a-vis the true error.
In this paper, an analytical partial singular characteristic tracking (pSCT) procedure for reducing the estimator’s error is implemented within our novel residual source estimator for a zeroth-order discontinuous Galerkin scheme, at the additional cost of a single inner iteration. A metric-based evaluation of the pSCT scheme versus the standard residual source estimator is performed over the parameter range of a Method of Manufactured Solutions test suite. The pSCT scheme generates near-ideal accuracy in the estimate in problems where the dominant source of the estimator’s error is the solution irregularity, namely, problems where the true solution is discontinuous and problems where the true solution’s first derivative is discontinuous and the scattering ratio is low. In problems where the scattering ratio is high and the true solution is discontinuous in the first derivative, the error in the scattering source, which is not converged by the pSCT scheme, is greater than the error incurred due to the irregularity.
Ultimately, a pSCT scheme is judged to be useful for error estimation in problems where the computational cost of the scheme is justified. In the presence of many irregularities, such a scheme may be intractable for general use, but in benchmarks, as an analytical tool, or in problems that have nondissipative discontinuities, the scheme may prove invaluable.