ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn
When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.
A. Marrel, B. Iooss, V. Chabridon
Nuclear Science and Engineering | Volume 196 | Number 3 | March 2022 | Pages 301-321
Technical Paper | doi.org/10.1080/00295639.2021.1980362
Articles are hosted by Taylor and Francis Online.
In the framework of risk assessment in nuclear accident analysis, best-estimate computer codes associated with probabilistic modeling of uncertain input variables are used to estimate safety margins. Often, a first step in such uncertainty quantification studies is to identify the critical configurations (or penalizing, in the sense of a prescribed safety margin) of several input parameters (called scenario inputs) under the uncertainty of the other input parameters. However, the large CPU-time cost of most of the computer codes used in nuclear engineering, as the ones related to thermal-hydraulic accident scenario simulations, involves developing highly efficient strategies. This work focuses on machine learning algorithms by way of a metamodel-based approach (i.e., a mathematical model that is fitted on a small sample of simulations). To achieve it with a very large number of inputs, a specific and original methodology called Identification of penalizing Configurations using SCREening And Metamodel (ICSCREAM) is proposed. The screening of influential inputs is based on an advanced global sensitivity analysis tool (Hilbert-Schmidt Independence Criterion importance measures). A Gaussian process metamodel is then sequentially built and used to estimate within a Bayesian framework the conditional probabilities of exceeding a high-level threshold according to the scenario inputs. The efficiency of this methodology is illustrated with two high-dimensional (around a hundred inputs) thermal-hydraulic industrial cases simulating an accident of primary coolant loss in a pressurized water reactor. For both use cases, the study focuses on the peak cladding temperature (PCT), and critical configurations are defined by exceeding the 90%-quantile of the PCT. In both cases, using only around one thousand code simulations, the ICSCREAM methodology allows one to estimate the impact of the scenario inputs and their critical areas of values.