ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Hongyi Yang, Hongrui Li, Xiuli Xue, Zhiwei Zhou
Nuclear Science and Engineering | Volume 196 | Number 3 | March 2022 | Pages 285-300
Technical Paper | doi.org/10.1080/00295639.2021.1973177
Articles are hosted by Taylor and Francis Online.
The sodium flow resistance in sodium-cooled fast reactor cores experiencing natural circulation conditions was measured for wire-wrapped 19- and 37-pin bundles using low-velocity water flows with Re <1000 and Re <750, respectively. The measurements were compared with predictions of existing wire-wrapped bundle friction factor correlations. The results show that the existing correlations usually underestimate the friction factors in the transition flow regime particularly for those with small transition Reynolds numbers from laminar to turbulent flow. The reason for the underestimation is that the transition Reynolds numbers observed in this study were much smaller than the predictions of all the existing correlations, and as a result, the transition flow at the small Reynolds number was treated as laminar or quasi-laminar flow by the correlations. In addition, the quasi turbulence in the early stage of transition flow should have a significant influence on flow resistance.