ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
Imre Pázsit, Victor Dykin
Nuclear Science and Engineering | Volume 196 | Number 3 | March 2022 | Pages 235-249
Technical Paper | doi.org/10.1080/00295639.2021.1973178
Articles are hosted by Taylor and Francis Online.
In a previous paper by Pázsit and Pál [“Multiplicity Theory Beyond the Point Model,” Ann. Nucl. Energy, Vol. 154 (2021)], a general transport theory calculation of the factorial moments of the number of neutrons emitted spontaneously from a sample was elaborated. In contrast to the original derivations by Hage and Cifarelli [“On the Factorial Moments of the Neutron Multiplicity Distribution of Fission Cascades,” Nucl. Instrum. Meth. Phys. Res. A, Vol. 236 (1985)] and Böhnel [“The Effect of Multiplication on the Quantitative Determination of Spontaneously Fissioning Isotopes by Neutron Correlation Analysis,” Nucl. Sci. Eng., Vol. 90 (1985)], also referred to as the point model, in the transport model the spatial and angular dependence of the internal fission chain is taken into account with a one-speed transport theory treatment. Quantitative results were given for a spherical item, and the bias of the point model regarding the estimation of the fission rate as compared to the more exact space-dependent model was estimated as a function of the size of the sphere and the factor.
In the present paper the formalism and the quantitative work are extended to the treatment of items with cylindrical shapes, which are more relevant in many practical applications. Results are presented for both square cylinders () and for tall () and flat () cylinders. This way the differences between the cylinder and the sphere on one hand and those between the various cylinder shapes on the other hand can be estimated. The results show that the bias depends on the geometry of the cylinder quite moderately, but similarly to the case of the sphere, the bias of the point model is quite significant for larger item sizes and values, and it is nonconservative (underestimates the fissile mass) as well.