ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Dong Li, Rao Hao
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 209-220
Technical Paper | doi.org/10.1080/00295639.2021.1968760
Articles are hosted by Taylor and Francis Online.
To simulate the complex accident phenomena of a marine reactor, the thermal-hydraulic system code RELAP5 is modified to perform the analysis under ocean conditions. An integrated reactor with a passive residual heat removal system (PRHRS) is modeled by the improved code, and the effects of different ocean motions under a total loss-of-flow accident (LOFA) and a loss-of-heat-sink (LOHS) accident are analyzed with respect to safety characteristics. The results indicate that for LOFA, the primary loop can form an effective natural circulation to cool the core, and for LOHS, the PRHRS can effectively remove the residual heat from the core to ensure the core safety. The results also show that heaving motion accelerates the drop of the first-loop temperature and enhances the heat transfer capacity of the PRHRS. Inclining motion reduces the natural circulation flow in the core. A rolling condition causes fluctuations in the mass flow rate, the variations of which are not strictly sinusoidal, and increasing the rolling period also improves the heat exchange capacity of the PRHRS.