ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Alexander Duenas, Daniel Wachs, Guillaume Mignot, Jose N. Reyes, Qiao Wu, Wade Marcum
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 193-208
Technical Paper | doi.org/10.1080/00295639.2021.1955591
Articles are hosted by Taylor and Francis Online.
New fuel design and development currently require 20 to 25 years to be qualified for use by the nuclear power industry. The thermal-hydraulics community has taken advantage of scaling theory to design reduced-scale experiments that correctly preserve dominant key phenomena while quantifying distorted phenomena. These techniques can be leveraged in the design and analysis of fuel performance experiments to help reduce the timeline associated with fuel design and development. This study uses the Dynamical System Scaling (DSS) method to analyze cladding temperature data from the recent SETH-C experiment in the Transient Reactor Test Facility (TREAT) and accompanying BISON simulations to assess dynamic distortions occurring throughout the fast power excursion transient. The DSS analysis revealed that on the cooldown from peak cladding temperature, the fuel radial power profile is the most sensitive modeling parameter, with a heterogeneous radial peaking factor corresponding to the lowest distortion compared to a uniform energy deposition. For the heatup to PCT, the heterogeneous radial power profile corresponded to the shortest process action. Last, for the heatup to PCT, the gap conductance model sensitivity was quantified using process actionsm and showed that the default light water reactor gap conductance model corresponded to the longest process action.