ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Alexander Duenas, Daniel Wachs, Guillaume Mignot, Jose N. Reyes, Qiao Wu, Wade Marcum
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 193-208
Technical Paper | doi.org/10.1080/00295639.2021.1955591
Articles are hosted by Taylor and Francis Online.
New fuel design and development currently require 20 to 25 years to be qualified for use by the nuclear power industry. The thermal-hydraulics community has taken advantage of scaling theory to design reduced-scale experiments that correctly preserve dominant key phenomena while quantifying distorted phenomena. These techniques can be leveraged in the design and analysis of fuel performance experiments to help reduce the timeline associated with fuel design and development. This study uses the Dynamical System Scaling (DSS) method to analyze cladding temperature data from the recent SETH-C experiment in the Transient Reactor Test Facility (TREAT) and accompanying BISON simulations to assess dynamic distortions occurring throughout the fast power excursion transient. The DSS analysis revealed that on the cooldown from peak cladding temperature, the fuel radial power profile is the most sensitive modeling parameter, with a heterogeneous radial peaking factor corresponding to the lowest distortion compared to a uniform energy deposition. For the heatup to PCT, the heterogeneous radial power profile corresponded to the shortest process action. Last, for the heatup to PCT, the gap conductance model sensitivity was quantified using process actionsm and showed that the default light water reactor gap conductance model corresponded to the longest process action.