Neutron scattering from a copper sample was measured at Rensselaer Polytechnic Institute utilizing the quasi-differential method. The measurement spanned the energy range from 0.5 to 20 MeV using the high-energy scattering system and from 2 keV to 0.5 MeV using the new mid-energy scattering system. Copper was selected as a material of interest to measure due to large discrepancies between experiments and simulations of the Zeus benchmark. The Zeus benchmark consists of a copper reflected highly enriched uranium system, and the angular distribution of copper scattering was thought to potentially be the cause of the discrepancy. The copper measurements found differences in the scattering response particularly in the incident energy region from 1 to 2 MeV for the high-energy measurement and from 2 to 4 keV in the mid-energy system. These differences are particularly noticeable at angles near 90 deg in the high-energy system and back angles in the mid-energy system. Additionally, for ENDF/B-VIII.0 there is a large discrepancy at the forward angle in the energy range around 0.5 MeV. For these reasons, a new evaluation of copper scattering utilizing these results is recommended and perhaps could help to improve the agreement with the Zeus benchmarks.