ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Ketan Ajay, Ravi Kumar, Akhilesh Gupta
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 75-97
Technical Paper | doi.org/10.1080/00295639.2021.1945393
Articles are hosted by Taylor and Francis Online.
The postulated dual-failure accident, i.e., loss of primary coolant flow along with impairment of the emergency coolant injection system, leads to peak fuel temperatures. It is well known that the temperature of the fuel assemblies is one of the significant factors that affect the outcome of an accident. Therefore, the present work aims to thoroughly investigate the thermal response of a single channel under postulated accident conditions. An experimental system was developed to capture the steady-state heat and temperature distribution in a representative 37-element fuel channel for a decay heat of 6.13 kW. Ohmic heating of the fuel rod simulators (FRSs) mimicked the generation of radioactive decay heat. Numerical simulation was also performed using the Fluent 19.1® code, and the discrete ordinates method was used to solve the radiative transfer equation. Based on the experimental results and the simulation results, it was found that the maximum Zircaloy-4 cladding temperature ≈850°C to 870°C was in the center ring. The temperature was found to vary around the circumference for each of the FRSs. Furthermore, the outer ring FRSs that had the lowest temperature developed the highest circumferential temperature gradient. In the pressure tube, the average circumferential temperature gradient obtained from the experiment and the simulation was 3.76°C/radian and 3.85°C/radian, respectively. Between the calandria tube and the moderator, the heat transfer coefficient was estimated to be around 822.3 W/m2‧K.