ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Ketan Ajay, Ravi Kumar, Akhilesh Gupta
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 75-97
Technical Paper | doi.org/10.1080/00295639.2021.1945393
Articles are hosted by Taylor and Francis Online.
The postulated dual-failure accident, i.e., loss of primary coolant flow along with impairment of the emergency coolant injection system, leads to peak fuel temperatures. It is well known that the temperature of the fuel assemblies is one of the significant factors that affect the outcome of an accident. Therefore, the present work aims to thoroughly investigate the thermal response of a single channel under postulated accident conditions. An experimental system was developed to capture the steady-state heat and temperature distribution in a representative 37-element fuel channel for a decay heat of 6.13 kW. Ohmic heating of the fuel rod simulators (FRSs) mimicked the generation of radioactive decay heat. Numerical simulation was also performed using the Fluent 19.1® code, and the discrete ordinates method was used to solve the radiative transfer equation. Based on the experimental results and the simulation results, it was found that the maximum Zircaloy-4 cladding temperature ≈850°C to 870°C was in the center ring. The temperature was found to vary around the circumference for each of the FRSs. Furthermore, the outer ring FRSs that had the lowest temperature developed the highest circumferential temperature gradient. In the pressure tube, the average circumferential temperature gradient obtained from the experiment and the simulation was 3.76°C/radian and 3.85°C/radian, respectively. Between the calandria tube and the moderator, the heat transfer coefficient was estimated to be around 822.3 W/m2‧K.