ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
Ketan Ajay, Ravi Kumar, Akhilesh Gupta
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 75-97
Technical Paper | doi.org/10.1080/00295639.2021.1945393
Articles are hosted by Taylor and Francis Online.
The postulated dual-failure accident, i.e., loss of primary coolant flow along with impairment of the emergency coolant injection system, leads to peak fuel temperatures. It is well known that the temperature of the fuel assemblies is one of the significant factors that affect the outcome of an accident. Therefore, the present work aims to thoroughly investigate the thermal response of a single channel under postulated accident conditions. An experimental system was developed to capture the steady-state heat and temperature distribution in a representative 37-element fuel channel for a decay heat of 6.13 kW. Ohmic heating of the fuel rod simulators (FRSs) mimicked the generation of radioactive decay heat. Numerical simulation was also performed using the Fluent 19.1® code, and the discrete ordinates method was used to solve the radiative transfer equation. Based on the experimental results and the simulation results, it was found that the maximum Zircaloy-4 cladding temperature ≈850°C to 870°C was in the center ring. The temperature was found to vary around the circumference for each of the FRSs. Furthermore, the outer ring FRSs that had the lowest temperature developed the highest circumferential temperature gradient. In the pressure tube, the average circumferential temperature gradient obtained from the experiment and the simulation was 3.76°C/radian and 3.85°C/radian, respectively. Between the calandria tube and the moderator, the heat transfer coefficient was estimated to be around 822.3 W/m2‧K.