ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn
When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.
Andrew T. Till, Marvin L. Adams, Jim E. Morel
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 53-74
Technical Paper | doi.org/10.1080/00295639.2021.1932224
Articles are hosted by Taylor and Francis Online.
Energy discretization of the transport equation is difficult due to numerous strong, narrow cross-section (XS) resonances. The standard traditional multigroup (MG) method can be sensitive to approximations in the weighting spectrum chosen for XS averaging, which can lead to inaccurate treatment of important phenomena such as self-shielding. We generalize the concept of a group to a discontiguous range of energies to create the Finite-Element with Discontiguous-Support (FEDS) method. FEDS uses clustering algorithms from machine learning to determine optimal definitions of discontiguous groups. By combining parts of multiple resonances into the same group, FEDS can accurately treat resonance behavior even when the number of groups is orders of magnitude smaller than the number of resonances. In this paper, we introduce the theory of the FEDS method and describe the workflow needed to use FEDS, noting that ordinary MG codes can use FEDS XSs without modification, provided these codes can handle upscattering. This allows existing MG codes to produce FEDS solutions. In the context of light water reactors, we investigate properties of FEDS XSs compared to MG XSs and compare -eigenvalue and reaction rate quantities of interest to continuous-energy Monte Carlo, showing that FEDS provides higher accuracy and less cancellation of error than MG with expert-chosen group structures.