ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
H. Naik, S. P. Dange, W. Jang, R. J. Singh
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 16-39
Technical Paper | doi.org/10.1080/00295639.2021.1951078
Articles are hosted by Taylor and Francis Online.
Mass yield distribution in the epi-cadmium neutron-induced fission of 237Np has been carried out by measuring the cumulative yields of fission products within the mass ranges of 78 to 117 and 123 to 157. A radiochemical and off-line gamma-ray spectrometric technique was used for the measurement. From the cumulative yields of the fission products, mass chain yields were obtained by applying the charge distribution correction. Mass yield distribution parameters such as the full-width at tenth-maximum of light and heavy mass wings, the peak-to-valley (P/V) ratio, and the average light mass <AL> and heavy mass (<AH>) as well as the average number of neutrons <ν> were obtained. The mass yield data in the epi-cadmium neutron-induced fission of 237Np were compared with the similar data in thermal and 14.5- to 14.7-MeV neutrons to examine the role of excitation energy in nuclear structure effect and P/V ratio.