ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Qicang Shen, Sooyoung Choi, Brendan Kochunas
Nuclear Science and Engineering | Volume 195 | Number 11 | November 2021 | Pages 1202-1235
Technical Paper | doi.org/10.1080/00295639.2021.1906586
Articles are hosted by Taylor and Francis Online.
In a companion paper, we present the theoretical development of a new robust, relaxation-free iteration scheme for multiphysics -eigenvalue problems. These types of problems are essential to the study of computational reactor physics and in particular whole-core, high-fidelity simulation codes. The deterministic whole-core simulation tools invariably rely on the coarse mesh finite difference (CMFD) acceleration for fast convergence. However, the use of CMFD-accelerated transport in multiphysics problems coupled via Picard iteration is not robust and is frequently treated with relaxation. In this paper, we build on our previous theoretical work that uses Fourier analysis to prove how stability and efficient convergence can be achieved in the multiphysics problem by appropriately loosening the convergence criteria of the low-order diffusion acceleration equations. Specifically, we develop a methodology for estimating a key problem-dependent parameter, the feedback intensity, required by the nearly optimally partially converged coarse mesh finite difference (NOPC-CMFD) method. We then describe the implementation of NOPC-CMFD in the Michigan Parallel Characteristics Transport (MPACT) code and perform several numerical calculations. Problems ranging from a single pressurized water reactor (PWR) fuel rod to a full-core PWR cycle depletion are analyzed to assess the performance and robustness of NOPC-CMFD over a wide range of conditions that consider multiple forms of multiphysics feedback. The results verify the theoretical predictions of our companion paper, illustrating that the NOPC-CMFD is superior to current CMFD or nonlinear diffusion acceleration schemes that use relaxation. Overall, the method is able to recover the performance of traditional CMFD in problems without feedback for a wide range of conditions. This was observed to result in a substantial reduction, up to 40%, of the run time in whole-core cycle depletion problems.