ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Krishna Chetty, Subash Sharma, John Buchanan, Martin Lopez-de-Bertodano
Nuclear Science and Engineering | Volume 195 | Number 10 | October 2021 | Pages 1087-1097
Technical Paper | doi.org/10.1080/00295639.2021.1898920
Articles are hosted by Taylor and Francis Online.
A new dynamic verification of the one-dimensional (1-D) computational Two-Fluid Model (TFM) using the Type II density wave instability (DWI) theory of Ishii is presented. Verification requires convergence in the sense of the Lax Equivalence Theorem and dynamic comparison with the DWI theory. Rigorous verification of the computational TFM must be performed with a computational model that is well posed without regularization because, otherwise, since the theory of Ishii is well posed, regularization would make the TFM incompatible with it.
Furthermore, since the TFM is well posed, it was possible to implement a second-order numerical method with a flux limiter that, together with a fine mesh, achieves numerical convergence. This is significant because numerical convergence and consistency, both of which are demonstrated, are prerequisites for the rigorous dynamic verification according to the Lax Equivalence Theorem. Thus, the apparent but previously unproven numerical verification of the 1-D TFM to simulate the two-phase long wave DWI instability is hereby performed.