ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Namjae Choi, Han Gyu Joo
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 954-964
Technical Paper | doi.org/10.1080/00295639.2021.1887701
Articles are hosted by Taylor and Francis Online.
A target velocity sampling method named the Relative Speed Tabulation (RST) is proposed for the efficient treatment of resonance elastic scattering in the Monte Carlo simulation utilizing graphics processing units (GPU). The RST method samples the relative speed between a neutron and a target nucleus by employing pretabulated probabilities of relative speeds. The target velocity is then determined from the sampled relative velocity and the neutron speed. The motivation was to avoid the rejection process of the Doppler Broadening Rejection Correction (DBRC) method, which can incur a significant reduction in the parallel performance of vector processors, such as GPUs, due to its largely varying rejection rates. The RST can also overcome the weakness of large variance of the Weight Correction Method (WCM), which would involve drastic changes in neutron weights. The verification results obtained for the Mosteller benchmark problems demonstrate that the RST is equivalent to the DBRC in accuracy, while the calculation speed remains at the same level of the WCM.