ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
S. Stimpson, A. Graham, B. Collins
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 778-793
Technical Paper | doi.org/10.1080/00295639.2021.1871994
Articles are hosted by Taylor and Francis Online.
Recent efforts in MPACT have focused on improving the performance of the 2D/1D subplane implementation to help target computational performance goals. This paper builds on previous efforts that targeted the use of subgrid treatments to improve the accuracy of control rod representation, presenting three additional applications of subgrid treatments with the goal of reducing the computational burden of simulations. These subgrid applications include treatment of spacer grids, thermal feedback, and axial reflector material representation. With these approaches, a single method of characteristics (MOC) plane can contain several different materials axially that are represented explicitly via subgrids on the coarse mesh finite difference (CMFD) mesh but are axially homogenized on the MOC mesh. This allows for a substantial reduction in the number of MOC planes needed in the calculation through the introduction of an approximate treatment, particularly with regard to the self-shielded cross sections and MOC-informed radial current coupling coefficients in CMFD.
Several test problems ranging from single rod to quarter core are used to assess the solution accuracy and performance of these various subgrid representations. Overall, the accuracy of the approximations seems very reasonable, with extremely small differences in eigenvalue observed and maximum pin power errors in the 0.5% to 1.0% range. Several cases show substantial value in the compromise between accuracy and computational performance. Others highlight the new computational hurdles that future research will aim to resolve.