ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Hosein Moayedi, Soheil Hajibaba, Hossein Afarideh, Mitra Ghergherehchi, Masoumeh Mohamadian
Nuclear Science and Engineering | Volume 195 | Number 6 | June 2021 | Pages 614-625
Technical Paper | doi.org/10.1080/00295639.2020.1848199
Articles are hosted by Taylor and Francis Online.
In this paper, a beta radioluminescent battery with different radioisotopes is studied, and different parameters of the proposed structure are optimized. These parameters include the luminescent layer thickness, the doping concentration in the semiconductor P-N junction, etc. Some of the parameters have an inverse effect on the battery outputs. So, a trade-off is sought between them to increase efficiency. Each part of the proposed structure is divided into much smaller parts in the simulations to ensure proper tracking of photons and the creation of electron holes in the semiconductor layer. Also, the passage of particles through each layer is carefully reviewed and calculated in terms of particle crossing percentage, their reflection percentage, rate of self-absorption, etc. Finally, the power, open-circuit voltage, and short-circuit current density of the proposed battery versus the main parameter changes are presented.