ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Alex Shaw, Farzad Rahnema, Andrew Holcomb, Doug Bowen
Nuclear Science and Engineering | Volume 195 | Number 4 | April 2021 | Pages 412-436
Technical Paper | doi.org/10.1080/00295639.2020.1830621
Articles are hosted by Taylor and Francis Online.
Recently completed cross-section evaluations sponsored in part by the Nuclear Criticality Safety Program were incorporated into the 2018 release of the ENDF/B-VIII.0 cross-section library. Evaluated isotopes of interest to the nuclear data and criticality safety community include 16O, 56Fe, and 63,65Cu. For performance validation, benchmark models defined in the International Criticality Safety Benchmark Evaluation Project Handbook were selected based on energy-integrated keff sensitivities to total cross sections of interest and compared with experimental values. Of the 102 benchmark configurations that were utilized, 63 are sensitive to 16O, 32 sensitive to 63,65Cu, and 25 sensitive to 56Fe. Selected benchmarks were modeled in SCALE 6.2.3 Criticality Safety Analysis Sequence (CSAS) continuous-energy Monte Carlo keff calculations with ENDF/B-VII.1, with a hybrid ENDF/B-VII.1 with ENDF/B-VIII.0 data substituted for individual isotopes of interest, and with ENDF/B-VIII.0. ENDF/B-VIII.0 showed improved agreement with experimental keff for 56Fe, 63Cu, elemental copper, and full library substitution while producing lessened agreement for 16O and 65Cu. With full library and isotope-specific ENDF/B-VIII.0 performance, a best-case ENDF library was formed by excluding underperforming isotopes’ ENDF/B-VIII.0 data, reverting 16O and 65Cu cross sections to ENDF/B-VII.1. This resulted in the average relative deviation between calculated and experimental data improving from 1.45σ for the ENDF/B-VIII.0 library to 1.32σ for the best-case library, relative to benchmark uncertainty.