ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Paul K. Romano, Steven P. Hamilton, Ronald O. Rahaman, April Novak, Elia Merzari, Sterling M. Harper, Patrick C. Shriwise, Thomas M. Evans
Nuclear Science and Engineering | Volume 195 | Number 4 | April 2021 | Pages 391-411
Technical Paper | doi.org/10.1080/00295639.2020.1830620
Articles are hosted by Taylor and Francis Online.
While the literature has numerous examples of Monte Carlo (MC) and computational fluid dynamics (CFD) coupling, most are hardwired codes intended primarily for research rather than as stand-alone, general-purpose applications. In this work, we describe an open source application, the Exascale Nuclear Reactor Investigative COde (ENRICO), which enables coupled neutronic and thermal-hydraulic simulations between multiple codes that can be chosen at run time (as opposed to a coupling between two specific codes). The application has been designed such that the control flow logic, domain mapping, nonlinear fixed-point iteration, solution transfers, and convergence checks are all agnostic to the underlying physics solvers used. Special emphasis has also been placed on enabling efficient execution on distributed-memory computing environments. The transfer of solution fields between solvers is performed in memory rather than through filesystem input/output. Additionally, solvers can be configured to run on overlapping or disjoint sets of processes.
To date, coupling with the OpenMC and Shift MC codes, the Nek5000 CFD code, and a simplified heat diffusion and subchannel solver has been implemented in ENRICO. We present results for coupled simulations of a single light water reactor fuel assembly based on the NuScale reactor using various combinations of the physics solvers. For this problem, the coupled simulations are shown to converge in about four Picard iterations. A comparison of the heat source and temperature distributions computed by ENRICO using OpenMC coupled with Nek5000 and Shift coupled with Nek5000 illustrates remarkable agreement between the codes.