ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Hongyi Yang, Song Li, Zhiwei Zhou
Nuclear Science and Engineering | Volume 195 | Number 4 | April 2021 | Pages 339-348
Technical Paper | doi.org/10.1080/00295639.2020.1826776
Articles are hosted by Taylor and Francis Online.
In order to obtain the heat transfer characteristics of the helium gap in conditions of different material thicknesses and linear power in high-temperature ranges, on the basis of previous research, an existent test device was improved. Through the theoretical design of double helium, the test device can perform experiments under high-temperature conditions. Compared with the experimental data, the theoretical design values are in good agreement with the experimental results. According to the design results of the test device, the helium gap test can be successfully carried out out in a high-temperature range, and the test results can provide reference for the design of the material irradiation assembly. The objective of this paper is to set up a multilayer helium gap according to the structural design of the irradiation device to achieve a helium gap test under high-temperature conditions under water circuit conditions.