ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Cole Gentry, Benjamin Collins, Eva Davidson, Gregory Davidson, Thomas Evans, Andrew Godfrey, Shane Hart, Germina Ilas, Seth Johnson, Kang Seog Kim, Scott Palmtag, Tara Pandya, Katherine Royston, William Wieselquist, Gary Wolfram
Nuclear Science and Engineering | Volume 195 | Number 3 | March 2021 | Pages 320-337
Technical Paper | doi.org/10.1080/00295639.2020.1820797
Articles are hosted by Taylor and Francis Online.
The CASL reactor simulation package VERA has been adapted to provide high-fidelity simulation capabilities for modeling source range detector response during subcritical reactor configurations. New features include the activation and shuffling of secondary-source assemblies, use of burned fuel neutron emission data from the ORIGEN depletion solver to the MPACT deterministic neutron transport solver, allowance of user-defined sources in MPACT based on material composition, ability to solve the subcritical source-driven system with neutron multiplication using the MPACT diffusion solver, and transfer of the calculated fission source from MPACT to the continuous-energy Monte Carlo solver Shift for final detector response evaluation using the CADIS methodology for variance reduction. These new capabilities were benchmarked against Watts Bar Unit 1 plant operating data for the first few fuel loading steps and were found to demonstrate excellent agreement with the measured data.