ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Taro Ueki
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 214-226
Technical Paper | doi.org/10.1080/00295639.2020.1801000
Articles are hosted by Taylor and Francis Online.
A dynamical system under extreme physical disorder has the tendency to evolve toward the equilibrium state characterized by an inverse power law power spectrum. In this paper, a practical, implementable, three-dimensional model is proposed for the random media formed by a multimaterials mixture under such a power spectrum using a randomized form of the Weierstrass function, its extension covering the white noise, and partial volume pairings of constituent materials. The proposed model is implemented in the SOLOMON Monte Carlo solver with delta tracking. Two sets of numerical results are shown using the JENDL-4 nuclear data libraries. First, the uncertainty of the neutron effective multiplication factor (keff) due to the inherent uncertainty in the formation of random media is shown for a randomized version of the Bigten core in the International Criticality Safety Benchmark Evaluation Project (ICSBEP). Second, the influence of the exponent of the power spectrum on the uncertainty of keff is evaluated for a randomized version of the Topsy core in the ICSBEP.