ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
A. M. M. Ali, Hanaa H. Abou-Gabal, Nader M. A. Mohamed, Ayah E. Elshahat
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 203-213
Technical Paper | doi.org/10.1080/00295639.2020.1799604
Articles are hosted by Taylor and Francis Online.
This work aimed to develop accelerator-driven systems (ADSs) with a subcritical thorium assembly for fuel breeding and clean energy utilization by using several seed fuels. The ADS reactor core was loaded with three different fuel types, namely, reprocessed fuel, UN, and UO2 (seed fuel) associated separately with ThO2 fuel (blanket) in a heterogeneous approach. The Monte Carlo code MCNPX 2.7.0 has been employed to calculate neutronic parameters such as the effective multiplication coefficient (Keff), the nuclear fuel evolution during the burnup for every case, and the power fraction from seed and blanket fuels. The results indicate that the utilization of thorium (without any contents of 233U at the beginning of cycle) with reprocessed fuel allowed more 233U production than the UN and UO2 cases but with shorter cycle length. Introducing thorium fuel with the UN into the ADS core presented an efficient method to produce thermal power with the longest cycle length approaching 20 years.