ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Praneel P. Gulabrao, Kevin T. Clarno
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 161-172
Technical Paper | doi.org/10.1080/00295639.2020.1794455
Articles are hosted by Taylor and Francis Online.
Photon buildup is a function of energy, medium, and geometry and therefore must be specifically calculated for the case of interest. The Martian atmosphere, mostly comprising carbon dioxide, is becoming more relevant to radiation researchers and therefore warrants the study of this gas mixture’s buildup properties for ionizing photon flux resulting from the secondary effects of galactic cosmic rays and solar flares. Specifically, this work uses the MCNP6 code to develop energy absorption buildup factors in finite slab models for energies ranging from 40 keV to 15 MeV with Martian regolith as the backscattering medium. The Martian carbon dioxide cycle is accounted for by determining maximum and minimum mean densities as a function of orbital position. An isotropic point source model for the atmosphere is also developed using the geometric progression fitting function. Buildup is bounded to a factor of approximately 23 at 100 keV for normally incident photons at the top of the atmosphere. For conservatism, the design problem neglects coherent scattering but assumes bremsstrahlung effects and uses Klein-Nishina free-electron cross sections for Compton scattering.